Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Surveillance ; 49(3):133-136, 2022.
Article in English | CAB Abstracts | ID: covidwho-2316822

ABSTRACT

This annual report summarizes the results of the 2021-2022 National Fruit Fly Surveillance Programme (NFFSP) in New Zealand. The report shows that despite the challenges posed by the Covid-19 pandemic, the programme was successful in meeting its objectives. A total of 139 individual trap runs were used to service the 7878 Lynfield traps in use, with no new traps established but several relocated to improve coverage. From the 2587 trap-run submissions, a total of 8183 vials were submitted, and no exotic fruit flies were detected. Thirteen samples collected in fruit-fly traps were categorized as "specimens of interest," while 9 specimens were submitted by trappers as passive surveillance samples. All lure batches tested during the season met the required standard, and field checks were made to ensure that all lures sent to trappers had been calibrated within the last 12 months. The report concludes that the trapping network was effective in supporting New Zealand's claims of area freedom.

2.
New Zealand Journal of Ecology ; 46(3), 2022.
Article in English | CAB Abstracts | ID: covidwho-2263174

ABSTRACT

Auckland Island, the fifth largest island in New Zealand, is the only island in New Zealand's subantarctic region where introduced mammalian pests remain (pigs, Sus scrofa;mice, Mus musculus;cats, Felis catus). The island has unique biodiversity and is a key site for progressing New Zealand's goal to be free of several introduced predators by 2050. Recent island eradication successes have rekindled interest in eradicating pests from Auckland Island, and for the first time considering all three pests in one project. Over a 3-year period, we tested the feasibility of eradicating pigs, mice and cats by looking at what it would take to succeed, rather than what we could practically deliver with the tools we currently have. We proposed adaptations to current methods and used an evidence-based approach by undertaking large-scale field trials to test uncertainties and emerging technologies in-situ. We gathered data and evaluated proposed methods against five established principles of eradication while considering the logistics and infrastructure requirements of the project. Eradicating pigs, mice and cats from Auckland Island is worthwhile and feasible but dependent on further development of emerging technologies and capabilities for efficient delivery with an acceptable level of risk. Three eradication operations are required with specific sequencing and timing, supported by initial establishment of infrastructure. The project needs a large investment spread over 8 to 10 years to yield permanent and internationally important benefits with low ongoing cost to sustain. The feasibility study exposed the project's scale and was used to inform decision makers, who postponed the work in 2020 in response to the economic impacts of COVID-19. The study focusses future preparations on identified planning issues and dependencies to progress project readiness in anticipation of it being launched when economic conditions allow.

3.
European Respiratory Journal ; 43(5):716-721, 2022.
Article in English | EMBASE | ID: covidwho-2262867

ABSTRACT

Aim: This study aimed at the species identification of selected indigenous earthworms of Manipur and Assam, Northeast India along with an exotic species using morpho-anatomical study and DNA barcoding. Methodology: Indigenous species of earthworms were collected from Imphal and Jorhat, North-eastern part of India. The exotic species of earthworm were collected from Indian Council of Agricultural Research Complex, Manipur. The samples were collected by digging and hand sorting method. Identification of samples was done by both conventional and molecular methods. Molecular characterization was accomplished through PCR amplification of the mitochondrial cytochrome oxidase I (COI) genes. Automatic sequencing reactions were performed for the amplified PCR products on ABI3100 Genetic Analyser (Applied Biosystems). Result(s): Out of five specimens (EM1, EM2, EM4, EG5 and EM6) examined through morpho-anatomical studies, three were identified to species level while the other two were identified to their genus level only. Out of EM1 and EM2 specimens in the genus Perionyx as per the morpho-anatomical studies, DNA barcoding could deduce the EM2 specimen up to the species level as P. excavatus. The exotic EM6 specimen morphologically identified as Eisenia fetida showed 99% COI gene sequence similarity with both E. fetida and E. andrei but its sequence divergence with E. andrei was less than 1%, so, it belonged to E. andrei. Interpretation(s): This study shows the reliability of clubbing DNA barcoding experiments with classical taxonomy in supplementing and strengthening the traditional taxonomy for accurate identification of earthworms.Copyright © Triveni Enterprises, Lucknow (India)

4.
Journal of Ecology and Environment ; 46, 2022.
Article in English | Scopus | ID: covidwho-1975202

ABSTRACT

Background: The coronavirus problem is an ecological problem stemming from a sud-den change in the relationship between parasites and hosts. Ecologists judge organisms that are established out of their original territory as exotic species. Unlike in their original habitat, these exotic species become very aggressive in their newly settled habitat. Coronavirus infection damage was bigger in Europe or the United States than that in the country of its origin, China, and its neighboring countries. Therefore, coronavirus infection damage resembles the damage due to the invasive species. Results: Exotic species are found in places with similar environmental conditions to those of their origin when introduced to other ecological regions. However, there are few ecological ill effects in their place of origin, while the damage is usually severe in the ecological regions in which it is introduced. According to historical records, exotic infectious diseases, such as European smallpox and measles, also showed a similar trend and caused great damage in newly established places. Therefore, it is expected that measures to manage exotic species could be used for the prevention of exotic infectious diseases such as the coronavirus. Conclusions: Prevention comes first in the management of exotic species, and in order to come up with preventive measures, it is important to collect information on the characteristics of related organisms and their preferred environment. In this respect, ecosystem management measures such as exotic species management measures could be used as a reference to prevent and suppress the spread. To put these measures into practice, it is urgently required to establish an international integrated information network for collect-ing and exchanging information between regions and countries. Furthermore, a system-atic ecosystem-management strategy in which natural and human environments could continue sustainable lives in their respective locations may serve as a countermeasure to prevent infectious diseases. © The Ecological Society of Korea in collaboration with The Korean Society of Limnology.

5.
Surveillance ; 48(4):10-24, 2021.
Article in English | CAB Abstracts | ID: covidwho-1887621

ABSTRACT

Exotic pest and disease investigations are managed and reported by the Ministry for Primary Industries' (MPI's) Diagnostic and Surveillance Directorate. This article presents a summary of investigations of suspect exotic and emerging pests and diseases in New Zealand during the period from July to September 2021.

6.
Biological Conservation ; 253(78), 2021.
Article in English | CAB Abstracts | ID: covidwho-1797134

ABSTRACT

Invasive species are a growing concern with increasing global connectivity. Feral pigeons (Columba livia) are widespread and invasive, thus their effective control is of keen international interest. The COVID-19 pandemic has offered an unprecedented opportunity to investigate the impact of a nation-wide Circuit Breaker (restricted human activities) in Singapore on first, the abundance of the feral pigeons and three urban commensals-the Javan myna (Acridotheres javanicus), common myna (A. tristis), and house crow (Corvus splendens) in different food source types;and second, the activity budgets of feral pigeons. A significant and progressive decline in feral pigeon abundance was observed in open food centres and feeding hotspots after the Circuit Breaker was implemented. While the house crow and common myna were less affected, the Javan myna abundance increased moderately at refuse collection centres during the Circuit Breaker and decreased significantly in green spaces after the Circuit Breaker. Changes in food abundance could also predict changes in feral pigeon abundance and its effect was greatest in feeding hotspots. A greater proportion of feral pigeons was observed foraging and moving with a smaller proportion seen resting with probable consequences on their reproductive capacity. Our study also cautions against drawing inferences on biological responses due to similar social restrictions without careful consideration of other ecological factors, like average flock size and time of the day, which also affected the proportion of pigeons foraging on natural versus anthropogenic food. In summary, our results advocate a food limitation approach to control the feral pigeon populations.

7.
Biodiversity ; 22(1/2):35-40, 2021.
Article in English | CAB Abstracts | ID: covidwho-1575248

ABSTRACT

Changes in human activities caused by the COVID-19 pandemic can have multiple effects on biodiversity but there is limited knowledge of how this can impact invasive alien species (IAS). Societal measures against the spread of COVID-19 can have both short-term and long-term consequences on IAS. In the short-term, reduced human disturbance on natural habitats can increase the activity of IAS and accelerate their spread. Furthermore, management agencies have reduced control activities, sometimes allowing IAS to thrive, and ongoing monitoring programs have been interrupted, hindering rapid identification and management of biological invasions. Long-term impacts could include global modifications to wildlife trade and increased releases of captive-bred species because of the fear of zoonotic diseases and also greater public awareness of the risks of pathogens being spread among animal populations. Long-term collection and sharing of data are crucial to modulate IAS management during and after the lockdowns.

SELECTION OF CITATIONS
SEARCH DETAIL